SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "db:Swepub ;srt2:(2010-2011);pers:(Zetterberg Henrik 1973);pers:(Hampel Harald)"

Search: db:Swepub > (2010-2011) > Zetterberg Henrik 1973 > Hampel Harald

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Blennow, Kaj, 1958, et al. (author)
  • Cerebrospinal fluid and plasma biomarkers in Alzheimer disease
  • 2010
  • In: Nature reviews. Neurology. - : Springer Science and Business Media LLC. - 1759-4766 .- 1759-4758. ; 6:3, s. 131-44
  • Research review (peer-reviewed)abstract
    • Intense multidisciplinary research has provided detailed knowledge of the molecular pathogenesis of Alzheimer disease (AD). This knowledge has been translated into new therapeutic strategies with putative disease-modifying effects. Several of the most promising approaches, such as amyloid-beta immunotherapy and secretase inhibition, are now being tested in clinical trials. Disease-modifying treatments might be at their most effective when initiated very early in the course of AD, before amyloid plaques and neurodegeneration become too widespread. Thus, biomarkers are needed that can detect AD in the predementia phase or, ideally, in presymptomatic individuals. In this Review, we present the rationales behind and the diagnostic performances of the core cerebrospinal fluid (CSF) biomarkers for AD, namely total tau, phosphorylated tau and the 42 amino acid form of amyloid-beta. These biomarkers reflect AD pathology, and are candidate markers for predicting future cognitive decline in healthy individuals and the progression to dementia in patients who are cognitively impaired. We also discuss emerging plasma and CSF biomarkers, and explore new proteomics-based strategies for identifying additional CSF markers. Furthermore, we outline the roles of CSF biomarkers in drug discovery and clinical trials, and provide perspectives on AD biomarker discovery and the validation of such markers for use in the clinic.
  •  
2.
  • Hampel, Harald, et al. (author)
  • Biological markers of amyloid beta-related mechanisms in Alzheimer's disease.
  • 2010
  • In: Experimental neurology. - : Elsevier BV. - 1090-2430 .- 0014-4886. ; 223:2, s. 334-46
  • Research review (peer-reviewed)abstract
    • Recent research progress has given detailed knowledge on the molecular pathogenesis of Alzheimer's disease (AD), which has been translated into an intense, ongoing development of disease-modifying treatments. Most new drug candidates are targeted on inhibiting amyloid beta (Abeta) production and aggregation. In drug development, it is important to co-develop biomarkers for Abeta-related mechanisms to enable early diagnosis and patient stratification in clinical trials, and to serve as tools to identify and monitor the biochemical effect of the drug directly in patients. Biomarkers are also requested by regulatory authorities to serve as safety measurements. Molecular aberrations in the AD brain are reflected in the cerebrospinal fluid (CSF). Core CSF biomarkers include Abeta isoforms (Abeta40/Abeta42), soluble APP isoforms, Abeta oligomers and beta-site APP-cleaving enzyme 1 (BACE1). This article reviews recent research advances on core candidate CSF and plasma Abeta-related biomarkers, and gives a conceptual review on how to implement biomarkers in clinical trials in AD.
  •  
3.
  • Hampel, Harald, et al. (author)
  • Biomarkers for Alzheimer's disease: academic, industry and regulatory perspectives.
  • 2010
  • In: Nature reviews. Drug discovery. - : Springer Science and Business Media LLC. - 1474-1784 .- 1474-1776. ; 9:7, s. 560-74
  • Research review (peer-reviewed)abstract
    • Advances in therapeutic strategies for Alzheimer's disease that lead to even small delays in onset and progression of the condition would significantly reduce the global burden of the disease. To effectively test compounds for Alzheimer's disease and bring therapy to individuals as early as possible there is an urgent need for collaboration between academic institutions, industry and regulatory organizations for the establishment of standards and networks for the identification and qualification of biological marker candidates. Biomarkers are needed to monitor drug safety, to identify individuals who are most likely to respond to specific treatments, to stratify presymptomatic patients and to quantify the benefits of treatments. Biomarkers that achieve these characteristics should enable objective business decisions in portfolio management and facilitate regulatory approval of new therapies.
  •  
4.
  • Hampel, Harald, et al. (author)
  • Total and phosphorylated tau protein as biological markers of Alzheimer's disease.
  • 2010
  • In: Experimental gerontology. - : Elsevier BV. - 1873-6815 .- 0531-5565. ; 45:1, s. 30-40
  • Journal article (peer-reviewed)abstract
    • Advances in our understanding of tau-mediated neurodegeneration in Alzheimer's disease (AD) are moving this disease pathway to center stage for the development of biomarkers and disease modifying drug discovery efforts. Immunoassays were developed detecting total (t-tau) and tau phosphorylated at specific epitopes (p-tauX) in cerebrospinal fluid (CSF), methods to analyse tau in blood are at the experimental beginning. Clinical research consistently demonstrated CSF t- and p-tau increased in AD compared to controls. Measuring these tau species proved informative for classifying AD from relevant differential diagnoses. Tau phosphorylated at threonine 231 (p-tau231) differentiated between AD and frontotemporal dementia, tau phosphorylated at serine 181 (p-tau181) enhanced classification between AD and dementia with Lewy bodies. T- and p-tau are considered "core" AD biomarkers that have been successfully validated by controlled large-scale multi-center studies. Tau biomarkers are implemented in clinical trials to reflect biological activity, mechanisms of action of compounds, support enrichment of target populations, provide endpoints for proof-of-concept and confirmatory trials on disease modification. World-wide quality control initiatives are underway to set required methodological and protocol standards. Discussions with regulatory authorities gain momentum defining the role of tau biomarkers for trial designs and how they may be further qualified for surrogate marker status.
  •  
5.
  • Mattsson, Niklas, 1979, et al. (author)
  • The Alzheimer's Association external quality control program for cerebrospinal fluid biomarkers.
  • 2011
  • In: Alzheimer's & dementia : the journal of the Alzheimer's Association. - : Wiley. - 1552-5279. ; 7:4, s. 386-395.e6
  • Journal article (peer-reviewed)abstract
    • The cerebrospinal fluid (CSF) biomarkers amyloid β (Aβ)-42, total-tau (T-tau), and phosphorylated-tau (P-tau) demonstrate good diagnostic accuracy for Alzheimer's disease (AD). However, there are large variations in biomarker measurements between studies, and between and within laboratories. The Alzheimer's Association has initiated a global quality control program to estimate and monitor variability of measurements, quantify batch-to-batch assay variations, and identify sources of variability. In this article, we present the results from the first two rounds of the program.
  •  
6.
  • Olsson, Bob, 1969, et al. (author)
  • Biomarker-based dissection of neurodegenerative diseases.
  • 2011
  • In: Progress in neurobiology. - : Elsevier BV. - 1873-5118 .- 0301-0082. ; 95:4
  • Research review (peer-reviewed)abstract
    • The diagnosis of neurodegenerative diseases within neurology and psychiatry are hampered by the difficulty in getting biopsies and thereby validating the diagnosis by pathological findings. Biomarkers for other types of disease have been readily adopted into the clinical practice where for instance troponins are standard tests when myocardial infarction is suspected. However, the use of biomarkers for neurodegeneration has not been fully incorporated into the clinical routine. With the development of cerebrospinal fluid (CSF) biomarkers that reflect pathological events within the central nervous system (CNS), important clinical diagnostic tools are becoming available. This review summarizes the most promising biomarker candidates that may be used to monitor different types of neurodegeneration and protein inclusions, as well as different types of metabolic changes, in living patients in relation to the clinical phenotype and disease progression over time. Our aim is to provide the reader with an updated lexicon on currently available biomarker candidates, how far they have come in development and how well they reflect pathogenic processes in different neurodegenerative diseases. Biomarkers for specific pathogenetic processes would also be valuable tools both to study disease pathogenesis directly in patients and to identify and monitor the effect of novel treatment strategies.
  •  
7.
  • Portelius, Erik, 1977, et al. (author)
  • Distinct cerebrospinal fluid amyloid beta peptide signatures in sporadic and PSEN1 A431E-associated familial Alzheimer's disease.
  • 2010
  • In: Molecular neurodegeneration. - : Springer Science and Business Media LLC. - 1750-1326. ; 5:2
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Alzheimer's disease (AD) is associated with deposition of amyloid beta (Abeta) in the brain, which is reflected by low concentration of the Abeta1-42 peptide in the cerebrospinal fluid (CSF). There are at least 15 additional Abeta peptides in human CSF and their relative abundance pattern is thought to reflect the production and degradation of Abeta. Here, we test the hypothesis that AD is characterized by a specific CSF Abeta isoform pattern that is distinct when comparing sporadic AD (SAD) and familial AD (FAD) due to different mechanisms underlying brain amyloid pathology in the two disease groups. RESULTS: We measured Abeta isoform concentrations in CSF from 18 patients with SAD, 7 carriers of the FAD-associated presenilin 1 (PSEN1) A431E mutation, 17 healthy controls and 6 patients with depression using immunoprecipitation-mass spectrometry. Low CSF levels of Abeta1-42 and high levels of Abeta1-16 distinguished SAD patients and FAD mutation carriers from healthy controls and depressed patients. SAD and FAD were characterized by similar changes in Abeta1-42 and Abeta1-16, but FAD mutation carriers exhibited very low levels of Abeta1-37, Abeta1-38 and Abeta1-39. CONCLUSION: SAD patients and PSEN1 A431E mutation carriers are characterized by aberrant CSF Abeta isoform patterns that hold clinically relevant diagnostic information. PSEN1 A431E mutation carriers exhibit low levels of Abeta1-37, Abeta1-38 and Abeta1-39; fragments that are normally produced by gamma-secretase, suggesting that the PSEN1 A431E mutation modulates gamma-secretase cleavage site preference in a disease-promoting manner.
  •  
8.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view